摘要翻译:
本文在Barndorff-Nielsen和Shephard(2001)的随机波动率模型中研究了美国型衍生工具的估值问题。当支付函数满足Lipschitz条件时,我们将这类导数的值刻画为积分偏微分方程的唯一粘性解。
---
英文标题:
《Viscosity Solutions and American Option Pricing in a Stochastic
  Volatility Model of the Ornstein-Uhlenbeck Type》
---
作者:
Alexandre F. Roch
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics        数学
二级分类:Analysis of PDEs        偏微分方程分析
分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE's, conservation laws, qualitative dynamics
存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学
--
---
英文摘要:
  In this paper, we study the valuation of American type derivatives in the stochastic volatility model of Barndorff-Nielsen and Shephard (2001). We characterize the value of such derivatives as the unique viscosity solution of an integral-partial differential equation when the payoff function satisfies a Lipschitz condition. 
---
PDF链接:
https://arxiv.org/pdf/0812.2444