摘要翻译:
设G是GL_N或SL_N为正特征P域k上的约化线性代数群。我们证明了以前只有当N<6或p>2^N时才成立的几个结果。设G有理地作用于有限生成交换K-代数a。假定a作为G-模具有良好的过滤或Schur过滤。设M是具有相容G作用的noetherian a-模。那么M具有有限的Good/Schur过滤维数,使得最多有有限个非零的H^i(G,M)。而且这些H^I(G,M)是不变量环A^G上的noetherian模。我们的主要工具是一个包含Grassmannian乘积中对角理想的Schur函子的分解。
---
英文标题:
《Finite Schur filtration dimension for modules over an algebra with Schur
filtration》
---
作者:
Vasudevan Srinivas and Wilberd van der Kallen
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let G be GL_N or SL_N as reductive linear algebraic group over a field k of positive characteristic p. We prove several results that were previously established only when N < 6 or p > 2^N. Let G act rationally on a finitely generated commutative k-algebra A. Assume that A as a G-module has a good filtration or a Schur filtration. Let M be a noetherian A-module with compatible G action. Then M has finite good/Schur filtration dimension, so that there are at most finitely many nonzero H^i(G,M). Moreover these H^i(G,M) are noetherian modules over the ring of invariants A^G. Our main tool is a resolution involving Schur functors of the ideal of the diagonal in a product of Grassmannians.
---
PDF链接:
https://arxiv.org/pdf/0706.0604