摘要翻译:
我们给出了相依随机变量的(隐含)系的矩母函数的积分表示。这一证明使用了期权定价的傅立叶方法的思想。这种表示可以用于数学金融学中的一大类模型,包括L\'evy和仿射过程。作为应用,我们计算了具有显着时间依赖性的NIG L\'Evy过程的隐copula。
---
英文标题:
《Computation of copulas by Fourier methods》
---
作者:
Antonis Papapantoleon
---
最新提交年份:
2014
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We provide an integral representation for the (implied) copulas of dependent random variables in terms of their moment generating functions. The proof uses ideas from Fourier methods for option pricing. This representation can be used for a large class of models from mathematical finance, including L\'evy and affine processes. As an application, we compute the implied copula of the NIG L\'evy process which exhibits notable time-dependence.
---
PDF链接:
https://arxiv.org/pdf/1108.1216