摘要翻译:
我们提出了一个动态密度泛函理论(dDFT),它考虑了流动溶剂对颗粒的平流作用。对于势流,我们可以使用与没有溶剂流时相同的封闭。所得平流dDFT的结构表明,它也可以用于非势流。我们将这种dDFT应用于在球形障碍物(如胶体)周围流动的溶剂中的布朗粒子(如聚合物线圈),并将其结果与基本布朗动力学的直接模拟进行比较。尽管数值上的限制不允许对平流dDFT进行精确的定量检查,但两者都显示出相同的定性特征。与以往忽略障碍物对流动变形的研究相比,我们发现障碍物前方粒子密度分布中的弓波和尾迹明显减小。因此,由(聚合物)颗粒施加在胶体上的摩擦力可以大大降低。
---
英文标题:
《A dynamic density functional theory for particles in a flowing solvent》
---
作者:
Markus Rauscher, Alvaro Dominguez, Matthias Krueger, Florencia Penna
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We present a dynamic density functional theory (dDFT) which takes into accou nt the advection of the particles by a flowing solvent. For potential flows we can use the same closure as in the absence of solvent flow. The structure of the resulting advected dDFT suggests that it could be used for non-potential flows as well. We apply this dDFT to Brownian particles (e.g., polymer coils) in a solvent flowing around a spherical obstacle (e.g., a colloid) and compare the results with direct simulations of the underlying Brownian dynamics. Although numerical limitations do not allow for an accurate quantitative check of the advected dDFT both show the same qualitative features. In contrast to previous works which neglected the deformation of the flow by the obstacle, we find that the bow-wave in the density distribution of particles in front of the obstacle as well as the wake behind it are reduced dramatically. As a consequence the friction force exerted by the (polymer) particles on the colloid can be reduced drastically.
---
PDF链接:
https://arxiv.org/pdf/709.154