摘要翻译:
对于任意交换环A,给出了多对称函数环TS^D_a(A[x_1,...,X_r])作为A-代数的显式极小生成元集。在特征零点,即当A是有理数上的代数时,自19世纪以来已知一个最小生成元集。Vaccarino最近也给出了一般情况下的一个相当小的发电机组,但它在一般情况下并不是最小的。给出了生成元的一个尖锐的度界,改进了Fleischmann已有的度界。
---
英文标题:
《A minimal set of generators for the ring of multisymmetric functions》
---
作者:
David Rydh
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The purpose of this article is to give, for any commutative ring A, an explicit minimal set of generators for the ring of multisymmetric functions TS^d_A(A[x_1,...,x_r]) as an A-algebra. In characteristic zero, i.e. when A is an algebra over the rational numbers, a minimal set of generators has been known since the 19th century. A rather small generating set in the general case has also recently been given by Vaccarino but it is not minimal in general. We also give a sharp degree bound on the generators, improving the degree bound previously obtained by Fleischmann.
---
PDF链接:
https://arxiv.org/pdf/0710.0470