摘要翻译:
随机热力学提供了一个框架来描述小系统,如胶体或生物分子被驱赶出平衡,但仍与热浴接触。两者,一个像能量平衡一样的第一定律,涉及交换热和熵产生,进入第二定律的精化,可以一致地沿着单个随机轨迹定义。从这种基于朗之万动力学的方法中可以得到涉及这些量的分布的各种精确关系式,如总熵产生的积分和详细涨落定理以及Jarzynski关系式。这些关系的类似物可以被证明为任何服从随机主方程的系统,特别是(生物)化学驱动的酶或整个反应网络。对Kardar-Parisi-Zhang方程等随机场方程研究这种关系的前景也作了简要的描述。
---
英文标题:
《Stochastic thermodynamics: Principles and perspectives》
---
作者:
Udo Seifert
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Soft Condensed Matter        软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
---
英文摘要:
  Stochastic thermodynamics provides a framework for describing small systems like colloids or biomolecules driven out of equilibrium but still in contact with a heat bath. Both, a first-law like energy balance involving exchanged heat and entropy production entering refinements of the second law can consistently be defined along single stochastic trajectories. Various exact relations involving the distribution of such quantities like integral and detailed fluctuation theorems for total entropy production and the Jarzynski relation follow from such an approach based on Langevin dynamics. Analogues of these relations can be proven for any system obeying a stochastic master equation like, in particular, (bio)chemically driven enzyms or whole reaction networks. The perspective of investigating such relations for stochastic field equations like the Kardar-Parisi-Zhang equation is sketched as well. 
---
PDF链接:
https://arxiv.org/pdf/710.1187