摘要翻译:
我们给出了一个抽象的社会聚集定理。社会和每一个人都有一种可能被解释为表达价值观或信仰的预先秩序。允许预序违背完备性和连续性,允许种群为无穷大。在偏序向量空间中,预序仅被假定为具有值的函数表示,且其乘积具有凸值域。这包括满足较强独立性的所有预购。然后,任何Pareto无关的社会预序都被证明是由个体预序表示的线性变换表示的。进一步地,社会预序上的帕累托条件对应于转换上的正性条件。当所有Pareto条件成立且种群有限时,社会预序由个体预序表示的总和来表示。我们提供两个应用程序。第一个结论给出了Harsanyi的社会聚集定理的一个极其普遍的版本。第二部分推广了线性意见池的一个经典结果。
---
英文标题:
《Aggregation for potentially infinite populations without continuity or
completeness》
---
作者:
David McCarthy (1), Kalle Mikkola (2) and Teruji Thomas (3) ((1)
Department of Philosophy, University of Hong Kong, (2) Department of
Mathematics and Systems Analysis, Aalto University, (3) Global Priorities
Institute, University of Oxford)
---
最新提交年份:
2019
---
分类信息:
一级分类:Economics 经济学
二级分类:Theoretical Economics 理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
---
英文摘要:
We present an abstract social aggregation theorem. Society, and each individual, has a preorder that may be interpreted as expressing values or beliefs. The preorders are allowed to violate both completeness and continuity, and the population is allowed to be infinite. The preorders are only assumed to be represented by functions with values in partially ordered vector spaces, and whose product has convex range. This includes all preorders that satisfy strong independence. Any Pareto indifferent social preorder is then shown to be represented by a linear transformation of the representations of the individual preorders. Further Pareto conditions on the social preorder correspond to positivity conditions on the transformation. When all the Pareto conditions hold and the population is finite, the social preorder is represented by a sum of individual preorder representations. We provide two applications. The first yields an extremely general version of Harsanyi's social aggregation theorem. The second generalizes a classic result about linear opinion pooling.
---
PDF链接:
https://arxiv.org/pdf/1911.00872