摘要翻译:
我们提出了一种新的能量收集策略,该策略使用专用能量源(ES)为射频能量收集供电的物联网提供最优的能量补充。具体地说,我们提出了一种两步双隧道能量请求(DTER)策略,以最小化能量收集设备和ES上的能量消耗。除了已有方法研究的因果关系和容量约束外,DTER还考虑了系统开销问题和储能元件的非线性电荷特性,使所提出的策略具有实用性。脱机和联机场景都在DTER的第二步中考虑。为了解决离线场景的非线性优化问题,我们将离线最优能量请求设计问题转化为经典的最短路径问题,从而通过动态规划(DP)算法获得全局最优解。提出了在线次优传输策略。仿真研究验证了在线策略在长期内可以获得与全局最优解几乎相同的能量效率。
---
英文标题:
《DTER: Schedule Optimal RF Energy Request and Harvest for Internet of
Things》
---
作者:
Yu Luo, Lina Pu, Yanxiao Zhao, Guodong Wang, Min Song
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
We propose a new energy harvesting strategy that uses a dedicated energy source (ES) to optimally replenish energy for radio frequency (RF) energy harvesting powered Internet of Things. Specifically, we develop a two-step dual tunnel energy requesting (DTER) strategy that minimizes the energy consumption on both the energy harvesting device and the ES. Besides the causality and capacity constraints that are investigated in the existing approaches, DTER also takes into account the overhead issue and the nonlinear charge characteristics of an energy storage component to make the proposed strategy practical. Both offline and online scenarios are considered in the second step of DTER. To solve the nonlinear optimization problem of the offline scenario, we convert the design of offline optimal energy requesting problem into a classic shortest path problem and thus a global optimal solution can be obtained through dynamic programming (DP) algorithms. The online suboptimal transmission strategy is developed as well. Simulation study verifies that the online strategy can achieve almost the same energy efficiency as the global optimal solution in the long term.
---
PDF链接:
https://arxiv.org/pdf/1802.09448