摘要翻译:
在拓扑空间上引入gerbes中心扩张的概念。然后我们证明了在中心扩张中存在提升物体的阻塞类和同构。我们还讨论了可转性细菌。这些结果在随后的论文中用于研究代数簇上的扭曲形变量化。
---
英文标题:
《Central Extensions of Gerbes》
---
作者:
Amnon Yekutieli
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Category Theory 范畴理论
分类描述:Enriched categories, topoi, abelian categories, monoidal categories, homological algebra
丰富范畴,topoi,abelian范畴,monoidal范畴,同调代数
--
---
英文摘要:
We introduce the notion of central extension of gerbes on a topological space. We then show that there are obstruction classes to lifting objects and isomorphisms in a central extension. We also discuss pronilpotent gerbes. These results are used in a subsequent paper to study twisted deformation quantization on algebraic varieties.
---
PDF链接:
https://arxiv.org/pdf/0801.0083