摘要翻译:
研究了由反辛对合集中的辛对称有限群$H$构成的K3-曲面的分类问题。采用了一种通过等变森约简的方法。这种方法即使对相当小的群也是成功的,这里给出了在$h=C_3\l×C_7$情况下的完整分类。对这个特殊群的考虑与研究辛自同构的极大有限群的K3-曲面有关。给出了$L2(7)$情形的应用。
---
英文标题:
《K3-surfaces with special symmetry: An example of classification by
Mori-reduction》
---
作者:
Kristina Frantzen and Alan Huckleberry
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The classification problem for K3-surfaces equipped with finite groups $H$ of symplectic symmetry centralized by an antisymplectic involution is considered. An approach via equivariant Mori-reduction is employed. This method, which has proved to be successful even for rather small groups, is exemplified here by giving a complete classification in the case $H = C_3 \ltimes C_7$. The consideration of this particular group is related to the study of K3-surfaces with maximal finite groups of symplectic automorphisms. Applications to the case $L_2(7)$ are given.
---
PDF链接:
https://arxiv.org/pdf/0802.2481