摘要翻译:
利用马尔可夫半鞅理论的方法,给出了一般状态空间上仿射过程正则性的一个新的证明。在得到这一结果的同时,我们还证明了仿射过程的定义,即具有指数仿射Fourier-Laplace变换的随机连续时间齐次Markov过程,已经暗示了C\'adl\'ag版本的存在性。这是仿射过程基础中最后一个公开的问题。
---
英文标题:
《Path properties and regularity of affine processes on general state
spaces》
---
作者:
Christa Cuchiero and Josef Teichmann
---
最新提交年份:
2013
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
---
英文摘要:
We provide a new proof for regularity of affine processes on general state spaces by methods from the theory of Markovian semimartingales. On the way to this result we also show that the definition of an affine process, namely as stochastically continuous time-homogeneous Markov process with exponential affine Fourier-Laplace transform, already implies the existence of a c\`adl\`ag version. This was one of the last open issues in the fundaments of affine processes.
---
PDF链接:
https://arxiv.org/pdf/1107.1607