摘要翻译:
我们在一个无概率的无限维环境中发展了资产定价的基本定理。我们用状态变量中的某种连续性性质来代替通常的先验概率假设。然后,概率作为完全支持鞅测度(而不是等价鞅测度)内生性地进入。证明了Harrison-Kreps-定理关于生存和无套利的一个变体。最后,我们给出了如何将超对冲问题嵌入到一个经典的无穷维线性规划问题中。
---
英文标题:
《Finance Without Probabilistic Prior Assumptions》
---
作者:
Frank Riedel
---
最新提交年份:
2011
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
---
英文摘要:
We develop the fundamental theorem of asset pricing in a probability-free infinite-dimensional setup. We replace the usual assumption of a prior probability by a certain continuity property in the state variable. Probabilities enter then endogenously as full support martingale measures (instead of equivalent martingale measures). A variant of the Harrison-Kreps-Theorem on viability and no arbitrage is shown. Finally, we show how to embed the superhedging problem in a classical infinite-dimensional linear programming problem.
---
PDF链接:
https://arxiv.org/pdf/1107.1078