摘要翻译:
我们研究了作为“浅层”分类器特征生成器的深层结构的无监督预训练。用叠加去噪自动编码器(SdA)作为支持向量机分类的特征预处理工具,可以显著提高分类精度,但代价是计算成本的大幅增加。本文提出了一种简单的模拟SDAS逐层训练的算法。然而,与SdAs相比,我们的算法不需要通过梯度下降进行训练,因为参数可以以封闭形式计算。它可以在不到20行的MATLABTMA中实现,并将计算时间从几个小时减少到几秒钟。我们表明,我们的特征转换可靠地改善了SVM分类的结果,在我们所有的数据集上--通常在四分之三的深度学习基准中超过SDA,甚至超过深度
神经网络。
---
英文标题:
《Rapid Feature Learning with Stacked Linear Denoisers》
---
作者:
Zhixiang Eddie Xu, Kilian Q. Weinberger, Fei Sha
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
We investigate unsupervised pre-training of deep architectures as feature generators for "shallow" classifiers. Stacked Denoising Autoencoders (SdA), when used as feature pre-processing tools for SVM classification, can lead to significant improvements in accuracy - however, at the price of a substantial increase in computational cost. In this paper we create a simple algorithm which mimics the layer by layer training of SdAs. However, in contrast to SdAs, our algorithm requires no training through gradient descent as the parameters can be computed in closed-form. It can be implemented in less than 20 lines of MATLABTMand reduces the computation time from several hours to mere seconds. We show that our feature transformation reliably improves the results of SVM classification significantly on all our data sets - often outperforming SdAs and even deep neural networks in three out of four deep learning benchmarks.
---
PDF链接:
https://arxiv.org/pdf/1105.0972