摘要翻译:
在环上考虑了两种粒子和不同跳跃速率的ASEP。证明了它的可积性,并利用嵌套代数Bethe Ansatz导出了任意粒子数状态的Bethe方程,推广了Derrida和Evans的结果。我们还给出了给定类型的粒子的总速度公式,以及它们在大尺寸和有限密度下的极限。
---
英文标题:
《Algebraic Bethe Ansatz for the two species ASEP with different hopping
  rates》
---
作者:
Luigi Cantini
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
  An ASEP with two species of particles and different hopping rates is considered on a ring. Its integrability is proved and the Nested Algebraic Bethe Ansatz is used to derive the Bethe Equations for states with arbitrary numbers of particles of each type, generalizing the results of Derrida and Evans. We present also formulas for the total velocity of particles of a given type and their limit for large size of the system and finite densities of the particles. 
---
PDF链接:
https://arxiv.org/pdf/710.4083