摘要翻译:
本文介绍了一种新的回归框架&高斯过程回归网络(GPRN),它结合了贝叶斯
神经网络的结构特性和高斯过程的非参数灵活性。该模型考虑了多个响应变量之间的输入相关信号和噪声相关性、输入相关长度尺度和振幅以及重尾预测分布。我们导出了有效的马尔可夫链、蒙特卡罗和变分贝叶斯推理过程。我们将GPRN作为一个多元输出回归和多元波动模型,在包括1000维基因表达数据集在内的基准数据集上,证明了与八个流行的多输出(多任务)高斯过程模型和三个多元波动模型相比,其性能得到了显著改善。
---
英文标题:
《Gaussian Process Regression Networks》
---
作者:
Andrew Gordon Wilson, David A. Knowles, Zoubin Ghahramani
---
最新提交年份:
2011
---
分类信息:
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the non-parametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive distributions. We derive both efficient Markov chain Monte Carlo and variational Bayes inference procedures for this model. We apply GPRN as a multiple output regression and multivariate volatility model, demonstrating substantially improved performance over eight popular multiple output (multi-task) Gaussian process models and three multivariate volatility models on benchmark datasets, including a 1000 dimensional gene expression dataset.
---
PDF链接:
https://arxiv.org/pdf/1110.4411