摘要翻译:
在本文中,作者提出了一种基于加权样本的加权核密度估计器(wKDE)来估计目标种群的密度。讨论了wKDE的带宽选择问题。介绍了三种基于平均积分平方误差的带宽估计器,并通过蒙特卡罗仿真说明了它们的性能。研究了最小二乘交叉验证方法和自适应权核密度估计器。本文还考虑了区间有界数据的边界问题,并将新方法应用于信息截尾的实际数据集。
---
英文标题:
《Bandwidth Selection for Weighted Kernel Density Estimation》
---
作者:
Bin Wang, Xiaofeng Wang
---
最新提交年份:
2011
---
分类信息:
一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
  In the this paper, the authors propose to estimate the density of a targeted population with a weighted kernel density estimator (wKDE) based on a weighted sample. Bandwidth selection for wKDE is discussed. Three mean integrated squared error based bandwidth estimators are introduced and their performance is illustrated via Monte Carlo simulation. The least-squares cross-validation method and the adaptive weight kernel density estimator are also studied. The authors also consider the boundary problem for interval bounded data and apply the new method to a real data set subject to informative censoring. 
---
PDF链接:
https://arxiv.org/pdf/709.1616