摘要翻译:
虽然信念函数在形式上可以看作是概率分布的推广,但信念函数与概率之间的相互作用问题在实践中仍然是一个问题。这个问题很困难,因为这些理论的使用背景明显不同,这些理论背后的语义也不完全相同。冲突信息的管理是社会各界日益关注的一个突出问题。最近的工作引入了新的规则来处理冲突再分配,同时结合信念函数。冲突的概念,或者被开放世界的假设所取消,似乎本身就阻止了在概率框架中对信念函数的直接解释。本文讨论了信念函数的概率解释问题。它首先引入并实现了一个理论基础规则,它本质上是一个自适应合取规则。证明了该规则是如何通过概率多模态逻辑从信念函数的逻辑解释中导出的;此外,基于熵最大化原理,引入了源独立性的概念。
---
英文标题:
《An Interpretation of Belief Functions by means of a Probabilistic
Multi-modal Logic》
---
作者:
Frederic Dambreville (ENSIETA)
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Logic 逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
---
英文摘要:
While belief functions may be seen formally as a generalization of probabilistic distributions, the question of the interactions between belief functions and probability is still an issue in practice. This question is difficult, since the contexts of use of these theory are notably different and the semantics behind these theories are not exactly the same. A prominent issue is increasingly regarded by the community, that is the management of the conflicting information. Recent works have introduced new rules for handling the conflict redistribution while combining belief functions. The notion of conflict, or its cancellation by an hypothesis of open world, seems by itself to prevent a direct interpretation of belief function in a probabilistic framework. This paper addresses the question of a probabilistic interpretation of belief functions. It first introduces and implements a theoretically grounded rule, which is in essence an adaptive conjunctive rule. It is shown, how this rule is derived from a logical interpretation of the belief functions by means of a probabilistic multimodal logic; in addition, a concept of source independence is introduced, based on a principle of entropy maximization.
---
PDF链接:
https://arxiv.org/pdf/1109.6401