摘要翻译:
偏移线性正则变换(OLCT)为信号处理和光学中许多著名的线性积分变换(如傅里叶变换、分数傅里叶变换、线性正则变换)提供了一个更通用的框架。为了刻画信号与OLCT的同时定位性,我们将过去几十年在傅里叶变换域中研究较多的Nazarov不确定原理、Hardy不确定原理、Beurling不确定原理、对数不确定原理和熵不确定原理推广到广义的OLCT域。
---
英文标题:
《Uncertainty Principles for the Offset Linear Canonical Transform》
---
作者:
Haiye Huo
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
The offset linear canonical transform (OLCT) provides a more general framework for a number of well known linear integral transforms in signal processing and optics, such as Fourier transform, fractional Fourier transform, linear canonical transform. In this paper, to characterize simultaneous localization of a signal and its OLCT, we extend some different uncertainty principles (UPs), including Nazarov's UP, Hardy's UP, Beurling's UP, logarithmic UP and entropic UP, which have already been well studied in the Fourier transform domain over the last few decades, to the OLCT domain in a broader sense.
---
PDF链接:
https://arxiv.org/pdf/1802.03785