摘要翻译:
张量网络(TNs)作为一种多向数据分析工具,由于其能够克服维数的诅咒,并将张量表示为其内在特征的较小尺度的相互联系而受到人们的关注。然而,尽管TNs具有明显的优势,但目前将其作为独立实体来处理并没有充分利用它们的底层结构和相关的特征定位。为此,从特征融合的类比出发,我们提出了一个严格的TNs组合框架,重点是它们的总和作为它们组合的自然方式。这允许任意数量张量的特征组合,只要它们的TN表示拓扑是同构的。通过对几组部分相关图像的分类,证明了该框架的优点,其性能优于标准的
机器学习算法。
---
英文标题:
《The sum of tensor networks》
---
作者:
Giuseppe G. Calvi, Ilia Kisil, Danilo P. Mandic
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Tensor networks (TNs) have been gaining interest as multiway data analysis tools owing to their ability to tackle the curse of dimensionality and to represent tensors as smaller-scale interconnections of their intrinsic features. However, despite the obvious advantages, the current treatment of TNs as stand-alone entities does not take full benefit of their underlying structure and the associated feature localization. To this end, embarking upon the analogy with a feature fusion, we propose a rigorous framework for the combination of TNs, focusing on their summation as the natural way for their combination. This allows for feature combination for any number of tensors, as long as their TN representation topologies are isomorphic. The benefits of the proposed framework are demonstrated on the classification of several groups of partially related images, where it outperforms standard machine learning algorithms.
---
PDF链接:
https://arxiv.org/pdf/1711.00701