全部版块 我的主页
论坛 经济学人 二区 外文文献专区
475 0
2022-03-08
摘要翻译:
本文研究并评价了多种姿态图融合策略在车辆定位中的应用。我们的重点是融合单一的绝对定位系统,即1赫兹的汽车级全球导航卫星系统(GNSS),和单一的相对定位系统,即25赫兹的车辆里程计。我们的评估是基于在公路、城市和农村地区记录的180公里长的车辆轨迹,并附有后处理的实时运动学全球导航卫星系统作为地面真相。结果表明,与非融合GNSS相比,误差的标准偏差显著降低了18%,但误差中的偏差不变。我们表明,基本原理是全球导航卫星系统读数的误差在时间上高度相关。这导致了不能通过使用来自里程计的相对定位信息来补偿的偏差,但它可以减少误差的标准偏差。
---
英文标题:
《An Experimental Study on Relative and Absolute Pose Graph Fusion for
  Vehicle Localization》
---
作者:
Anweshan Das and Gijs Dubbelman
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  In this work, we research and evaluate multiple pose-graph fusion strategies for vehicle localization. We focus on fusing a single absolute localization system, i.e. automotive-grade Global Navigation Satellite System (GNSS) at 1 Hertz, with a single relative localization system, i.e. vehicle odometry at 25 Hertz. Our evaluation is based on 180 Km long vehicle trajectories that are recorded in highway, urban and rural areas, and that are accompanied with post-processed Real Time Kinematic GNSS as ground truth. The results exhibit a significant reduction in the error's standard deviation by 18% but the bias in the error is unchanged, when compared to non-fused GNSS. We show that the underlying principle is the fact that errors in GNSS readings are highly correlated in time. This causes a bias that cannot be compensated for by using the relative localization information from the odometry, but it can reduce the standard deviation of the error.
---
PDF链接:
https://arxiv.org/pdf/1803.07838
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群