摘要翻译:
研究了多层网络主特征向量(PEV)的局部化性质。从一个多层网络对应于一个离域PEV开始,我们使用一种优化技术重新布线网络边缘,使得重新布线的多层网络的PEV变得更加局域化。该框架允许我们在重新布线过程中仔细检查网络在不同定位点的结构和光谱特性。我们证明了只重新布线一层就足以获得具有高度局部化PEV的多层网络。我们的研究表明,优化的多层网络的单边重新布线可以导致高度局域PEV的完全离域。PEV局部化行为中的这种敏感性伴随着一对几乎退化的特征值。这一观察为更深入地了解PEV网络定位的起源开辟了一条途径。此外,利用真实世界的社会和生物数据构建的多层网络的分析表明,这些真实世界的多层网络的局部化特性与模型多层网络的仿真结果符合得很好。该研究与需要了解多层网络中扰动传播的应用相关。
---
英文标题:
《Localization of multilayer networks by the optimized single-layer
  rewiring》
---
作者:
Sarika Jalan and Priodyuti Pradhan
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Physics        物理学
二级分类:Adaptation and Self-Organizing Systems        自适应和自组织系统
分类描述:Adaptation, self-organizing systems, statistical physics, fluctuating systems, stochastic processes, interacting particle systems, machine learning
自适应,自组织系统,统计物理,波动系统,随机过程,相互作用粒子系统,机器学习
--
一级分类:Physics        物理学
二级分类:Physics and Society        物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
英文摘要:
  We study localization properties of principal eigenvector (PEV) of multilayer networks. Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one-layer is enough to attain a multilayer network having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized multilayer network can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEV is accompanied by a pair of almost degenerate eigenvalues. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data show that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. The study is relevant to applications that require understanding propagation of perturbation in multilayer networks. 
---
PDF链接:
https://arxiv.org/pdf/1712.04829