摘要翻译:
我们重新讨论了Lagerl\\(2006)*中研究的具有不确定需求的线性Cournot模型,并给出了均衡唯一性的充分条件,补充了已有的结果。证明了当需求截距分布具有平均剩余需求递减(DMRD)或广义故障率递增(IGFR)性质时,均衡解的唯一性得到保证。DMRD条件意味着单位产出的期望利润是对数凹的,而不需要对需求截距密度的存在或形状作额外的假设,因此,它肯定地回答了Lagerl“(2006)的猜想,即这些条件可能不是必需的。Johan Lagerl”的假设,在需求不确定的Cournot模型中均衡唯一性。B.E.理论经济学杂志,第一卷。6:Iss 1。(专题),第19条:1-6号,2006年。
---
英文标题:
《On the Equilibrium Uniqueness in Cournot Competition with Demand
Uncertainty》
---
作者:
Stefanos Leonardos and Costis Melolidakis
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics 经济学
二级分类:Theoretical Economics 理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
---
英文摘要:
We revisit the linear Cournot model with uncertain demand that is studied in Lagerl\"of (2006)* and provide sufficient conditions for equilibrium uniqueness that complement the existing results. We show that if the distribution of the demand intercept has the decreasing mean residual demand (DMRD) or the increasing generalized failure rate (IGFR) property, then uniqueness of equilibrium is guaranteed. The DMRD condition implies log-concavity of the expected profits per unit of output without additional assumptions on the existence or the shape of the density of the demand intercept and, hence, answers in the affirmative the conjecture of Lagerl\"of (2006)* that such conditions may not be necessary. *Johan Lagerl\"of, Equilibrium uniqueness in a Cournot model with demand uncertainty. The B.E. Journal in Theoretical Economics, Vol. 6: Iss 1. (Topics), Article 19:1--6, 2006.
---
PDF链接:
https://arxiv.org/pdf/1906.03558