全部版块 我的主页
论坛 经济学人 二区 外文文献专区
244 0
2022-03-08
摘要翻译:
许多经济理论模型都包含有限假设,这些假设虽然是为了简单起见而引入的,但在分析中却起到了真正的作用。这种假设引入了一个概念问题,因为依赖于有限性的结果往往隐含地不稳健;例如,它们可能依赖于边缘效应或人工边界条件。在这里,我们提出了一种统一的方法,使我们能够消除有限性假设,如关于市场规模、时间范围和数据集的假设。然后我们将我们的方法应用于各种匹配、交换经济和显示偏好设置。我们的方法的关键是逻辑紧致性,这是命题逻辑的核心结果。在逻辑紧致性的基础上,在匹配条件下,我们对Fleiner分析所隐含的大市场存在性结果进行了反驳,并(新)证明了无限市场中人最优稳定机制的策略证明性,以及Nguyen和Vohra的无限市场版本对有偶的近可行稳定匹配的存在性结果。在一个交易网络的背景下,我们证明了Hatfield等人。关于Walrasian均衡存在性的结果推广到无限大市场。在动态匹配环境下,我们证明了Pereyra关于动态双边匹配市场的存在性结果推广到双无限时域。最后,除了解的存在性和刻画之外,我们在一个揭示偏好的背景下,重新证明了Reny对Afriat定理的无限数据版本,并(新)证明了McFadden和Richter对可理性化随机数据集的刻画的无限数据版本。
---
英文标题:
《To Infinity and Beyond: Scaling Economic Theories via Logical
  Compactness》
---
作者:
Yannai A. Gonczarowski, Scott Duke Kominers, Ran I. Shorrer
---
最新提交年份:
2020
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--

---
英文摘要:
  Many economic-theoretic models incorporate finiteness assumptions that, while introduced for simplicity, play a real role in the analysis. Such assumptions introduce a conceptual problem, as results that rely on finiteness are often implicitly nonrobust; for example, they may depend upon edge effects or artificial boundary conditions. Here, we present a unified method that enables us to remove finiteness assumptions, such as those on market sizes, time horizons, and datasets. We then apply our approach to a variety of matching, exchange economy, and revealed preference settings.   The key to our approach is Logical Compactness, a core result from Propositional Logic. Building on Logical Compactness, in a matching setting, we reprove large-market existence results implied by Fleiner's analysis, and (newly) prove both the strategy-proofness of the man-optimal stable mechanism in infinite markets and an infinite-market version of Nguyen and Vohra's existence result for near-feasible stable matchings with couples. In a trading-network setting, we prove that the Hatfield et al. result on existence of Walrasian equilibria extends to infinite markets. In a dynamic matching setting, we prove that Pereyra's existence result for dynamic two-sided matching markets extends to a doubly infinite time horizon. Finally, beyond existence and characterization of solutions, in a revealed-preference setting we reprove Reny's infinite-data version of Afriat's theorem and (newly) prove an infinite-data version of McFadden and Richter's characterization of rationalizable stochastic datasets.
---
PDF链接:
https://arxiv.org/pdf/1906.10333
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群