摘要翻译:
规划中的外生事件的处理在许多现实世界的领域中具有重要的现实意义,在这些领域中,某些规划行动的前提条件受到这些事件的影响。在这篇论文中,我们重点研究在时间域中具有外生事件的计划,这些事件发生在已知的时间内,并施加了计划中的某些动作必须在预定义的时间窗口内执行的约束。当操作有持续时间时,处理这种时间约束会给计划增加额外的困难。我们提出了一种基于约束的时态推理和基于图的局部搜索的规划框架相结合的规划方法。我们的技术是在参加第四届国际规划竞赛(IPC-4)的规划师身上实施的。对IPC-4结果的统计分析表明,我们的方法在CPU时间和计划质量方面都是有效的。另外的实验表明,集成到我们的计划器中的时间推理技术具有良好的性能。
---
英文标题:
《An Approach to Temporal Planning and Scheduling in Domains with
Predictable Exogenous Events》
---
作者:
A. Gerevini, A. Saetti, I. Serina
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
The treatment of exogenous events in planning is practically important in many real-world domains where the preconditions of certain plan actions are affected by such events. In this paper we focus on planning in temporal domains with exogenous events that happen at known times, imposing the constraint that certain actions in the plan must be executed during some predefined time windows. When actions have durations, handling such temporal constraints adds an extra difficulty to planning. We propose an approach to planning in these domains which integrates constraint-based temporal reasoning into a graph-based planning framework using local search. Our techniques are implemented in a planner that took part in the 4th International Planning Competition (IPC-4). A statistical analysis of the results of IPC-4 demonstrates the effectiveness of our approach in terms of both CPU-time and plan quality. Additional experiments show the good performance of the temporal reasoning techniques integrated into our planner.
---
PDF链接:
https://arxiv.org/pdf/1110.2728