全部版块 我的主页
论坛 经济学人 二区 外文文献专区
494 0
2022-03-08
摘要翻译:
我们将Witt定理推广到子空间的几类同时等距。我们确定了子空间$\phi:E\to E'$的等距扩展到一个等距$\phi_v:V\to V'$的充要条件,该等距还将给定的子空间发送到另一个子空间,或将给定的自对偶标志发送到另一个子空间,或将Witt分解发送到另一个子空间,并将特殊的自对偶标志发送到另一个子空间。我们还确定了通有标志等距或(子空间,自对偶标志)对同时等距的充要条件。
---
英文标题:
《Some Extensions of Witt's Theorem》
---
作者:
Huajun Huang
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Representation Theory        表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--

---
英文摘要:
  We extend Witt's theorem to several kinds of simultaneous isometries of subspaces. We determine sufficient and necessary conditions for the extension of an isometry of subspaces $\phi:E\to E'$ to an isometry $\phi_V:V\to V'$ that also sends a given subspace to another, or a given self-dual flag to another, or a Witt's decomposition to another and a special self-dual flag to another. We also determine sufficient and necessary conditions for the isometry of generic flags or the simultaneous isometry of (subspace, self-dual flag) pairs.
---
PDF链接:
https://arxiv.org/pdf/0705.3839
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群