摘要翻译:
本文提出了一种监控算法的设计,该算法可以监控道路交叉口的安全,并在必要时对驾驶员进行安全输入。监控器的设计由安全验证和控制设计两部分组成。安全验证是确定车辆是否能够在不与当前司机输入碰撞的情况下通过十字路口的问题。我们将这个安全验证问题转化为一个jobshop调度问题,它使最大延迟最小化,并评估最优成本是否为零。零最优费用对应于所有车辆可以在不发生碰撞的情况下穿越每个冲突区域。由于车辆的非线性二阶动力学特性,计算最优费用需要求解混合整数非线性规划(MINLP)问题。因此,我们通过构造两个相关的混合整数线性规划(MILP)问题来估计这个最优成本,这些问题假设了更简单的车辆动力学。我们证明了这两个MILP问题得到了最优成本的下界和上界。我们还量化了这些MILP问题的最坏情况逼近误差。如果计算上界的MILP问题产生正的最优成本,我们设计监督员以安全的控制输入覆盖车辆。我们从理论上论证了监督员保持交叉口的安全和无阻塞性。计算机仿真进一步验证了该算法能够对实际规模的问题实时运行。
---
英文标题:
《Safety Verification and Control for Collision Avoidance at Road
Intersections》
---
作者:
Heejin Ahn and Domitilla Del Vecchio
---
最新提交年份:
2016
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Systems and Control 系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
---
英文摘要:
This paper presents the design of a supervisory algorithm that monitors safety at road intersections and overrides drivers with a safe input when necessary. The design of the supervisor consists of two parts: safety verification and control design. Safety verification is the problem to determine if vehicles will be able to cross the intersection without colliding with current drivers' inputs. We translate this safety verification problem into a jobshop scheduling problem, which minimizes the maximum lateness and evaluates if the optimal cost is zero. The zero optimal cost corresponds to the case in which all vehicles can cross each conflict area without collisions. Computing the optimal cost requires solving a Mixed Integer Nonlinear Programming (MINLP) problem due to the nonlinear second-order dynamics of the vehicles. We therefore estimate this optimal cost by formulating two related Mixed Integer Linear Programming (MILP) problems that assume simpler vehicle dynamics. We prove that these two MILP problems yield lower and upper bounds of the optimal cost. We also quantify the worst case approximation errors of these MILP problems. We design the supervisor to override the vehicles with a safe control input if the MILP problem that computes the upper bound yields a positive optimal cost. We theoretically demonstrate that the supervisor keeps the intersection safe and is non-blocking. Computer simulations further validate that the algorithms can run in real time for problems of realistic size.
---
PDF链接:
https://arxiv.org/pdf/1612.02795