摘要翻译:
条件计划的研究拒绝了关于计划所运行的系统的状态和变化的知识不存在不确定性或不完全性的假设。在没有这些假设的情况下,实现目标的操作序列依赖于初始状态和系统中不确定性变化的结果。此设置提出了如何表示计划以及如何执行计划搜索的问题。答案与更简单的古典框架中的答案大相径庭。本文利用经典规划中的可满足性算法,从一个新的角度来研究条件规划。由于固有的计算限制,将条件规划转化为命题逻辑中的公式是不可行的。相反,我们将条件规划转化为量化的布尔公式。我们讨论了条件规划的三种形式化形式作为量化布尔公式,并给出了用定理证明器得到的实验结果。
---
英文标题:
《Constructing Conditional Plans by a Theorem-Prover》
---
作者:
J. Rintanen
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
The research on conditional planning rejects the assumptions that there is no uncertainty or incompleteness of knowledge with respect to the state and changes of the system the plans operate on. Without these assumptions the sequences of operations that achieve the goals depend on the initial state and the outcomes of nondeterministic changes in the system. This setting raises the questions of how to represent the plans and how to perform plan search. The answers are quite different from those in the simpler classical framework. In this paper, we approach conditional planning from a new viewpoint that is motivated by the use of satisfiability algorithms in classical planning. Translating conditional planning to formulae in the propositional logic is not feasible because of inherent computational limitations. Instead, we translate conditional planning to quantified Boolean formulae. We discuss three formalizations of conditional planning as quantified Boolean formulae, and present experimental results obtained with a theorem-prover.
---
PDF链接:
https://arxiv.org/pdf/1105.5465