摘要翻译:
本文证明了对于代数闭域$K$上的任何有限维向量空间$V$,以及对于$GL(V)$的任何有限子群$G$,它要么是可解的,要么是由伪反射生成的,使得$G$是$K$中的一个单位,射影簇$\MathBB P(V)/G$是关于$\MathCal O(1)^{\乘以G}$的下降的射影正规的。
---
英文标题:
《Projective normality of quotient varieties modulo finite groups》
---
作者:
S. S. Kannan, S. K. Pattanayak, Pranab Sardar
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
In this note, we prove that for any finite dimensional vector space $V$ over an algebraically closed field $k$, and for any finite subgroup $G$ of $GL(V)$ which is either solvable or is generated by pseudo reflections such that the $|G|$ is a unit in $k$, the projective variety $\mathbb P(V)/G$ is projectively normal with respect to the descent of $\mathcal O(1)^{\otimes |G|}$.
---
PDF链接:
https://arxiv.org/pdf/0801.1168