摘要翻译:
我们证明了如果紧Kahler流形X允许上同调双曲满射自同态,那么它的Kodaira维数是非正的。这对全纯情形下的Guedj猜想给出了肯定的回答。本文的主要部分是确定维数为3的X的几何结构和基本群(直到有限指数)。
---
英文标题:
《Cohomologically hyperbolic endomorphisms of complex manifolds》
---
作者:
De-Qi Zhang
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics        数学
二级分类:Dynamical Systems        动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  We show that if a compact Kahler manifold X admits a cohomologically hyperbolic surjective endomorphism then its Kodaira dimension is non-positive. This gives an affirmative answer to a conjecture of Guedj in the holomorphic case. The main part of the paper is to determine the geometric structure and the fundamental groups (up to finite index) for those X of dimension 3. 
---
PDF链接:
https://arxiv.org/pdf/0805.4140