全部版块 我的主页
论坛 经济学人 二区 外文文献专区
613 0
2022-03-08
摘要翻译:
很大一部分在线广告是通过重复的二次价格拍卖出售的。在这些拍卖中,底价是拍卖商增加收入的主要工具。在这项工作中,我们研究了以下问题:在考虑到竞拍者的长期激励和策略行为的情况下,在以前出价的基础上改变保留价格是否能提高拍卖的收益?我们证明,如果估值的分布是已知的,并且满足标准正则性假设,那么最优机制具有常数准备金。然而,当估值的分布存在不确定性时,可以使用以前的出价来了解估值的分布并更新底价。我们提出了一个简单的、近似激励相容的、渐近最优的动态储备机制,该机制可以显著提高收益,超过最佳静态储备。这篇论文来自2014年7月(我们提交给WINE 2014),稍后发布在arxiv上,以补充WINE 2014论文集中的1页摘要。
---
英文标题:
《Dynamic Reserve Prices for Repeated Auctions: Learning from Bids》
---
作者:
Yash Kanoria and Hamid Nazerzadeh
---
最新提交年份:
2020
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--

---
英文摘要:
  A large fraction of online advertisement is sold via repeated second price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: Can changing the reserve prices based on the previous bids improve the revenue of the auction, taking into account the long-term incentives and strategic behavior of the bidders? We show that if the distribution of the valuations is known and satisfies the standard regularity assumptions, then the optimal mechanism has a constant reserve. However, when there is uncertainty in the distribution of the valuations, previous bids can be used to learn the distribution of the valuations and to update the reserve price. We present a simple, approximately incentive-compatible, and asymptotically optimal dynamic reserve mechanism that can significantly improve the revenue over the best static reserve.   The paper is from July 2014 (our submission to WINE 2014), posted later here on the arxiv to complement the 1-page abstract in the WINE 2014 proceedings.
---
PDF链接:
https://arxiv.org/pdf/2002.07331
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群