全部版块 我的主页
论坛 经济学人 二区 外文文献专区
4252 0
2022-03-08
摘要翻译:
在不假定标准有限条件、无以太性或Goldie性质的情况下,我们发展了任意结合代数R的有理理想理论。Amitsur-Martindale商环取代了古典商环,古典商环是理性理想先前定义的基础,但在一般情况下是不可用的。我们的主要结果是关于仿射代数群G在R上的有理作用,在代数闭基域上,我们证明了通有有理理想的一个存在唯一性结果:对于R的每一个G-有理理想I,由I定义的有理谱Rat R的闭子集是Rat R上唯一的G-轨道的闭包。在附加的Goldie假设下,这是由Moeglin和Rentschler(在特征零中)和Vonessen(在任意特征中)建立的,回答了Dixmier的一个问题。
---
英文标题:
《Group actions and rational ideals》
---
作者:
Martin Lorenz
---
最新提交年份:
2009
---
分类信息:

一级分类:Mathematics        数学
二级分类:Rings and Algebras        环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We develop the theory of rational ideals for arbitrary associative algebras R without assuming the standard finiteness conditions, noetherianness or the Goldie property. The Amitsur-Martindale ring of quotients replaces the classical ring of quotients which underlies the previous definition of rational ideals but is not available in a general setting.   Our main result concerns rational actions of an affine algebraic group G on R. Working over an algebraically closed base field, we prove an existence and uniqueness result for generic rational ideals: for every G-rational ideal I of R, the closed subset of the rational spectrum Rat R that is defined by I is the closure of a unique G-orbit in Rat R. Under additional Goldie hypotheses, this was established earlier by Moeglin and Rentschler (in characteristic zero) and by Vonessen (in arbitrary characteristic), answering a question of Dixmier.
---
PDF链接:
https://arxiv.org/pdf/0801.3472
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群