摘要翻译:
我们考虑了多项式$F_1,…,F_r$生成的素理想$I$的热带变种$\Mathcal{T}(I)$,并从计算的角度重新讨论了Bieri和Groves提出的正则投影技术。特别地,我们表明$I$在增加度数的价格下有一个最多$R+\Codim I+1的热带基数,并给出了这些基数的计算描述。
---
英文标题:
《Tropical bases by regular projections》
---
作者:
Kerstin Hept and Thorsten Theobald
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We consider the tropical variety $\mathcal{T}(I)$ of a prime ideal $I$ generated by the polynomials $f_1, ..., f_r$ and revisit the regular projection technique introduced by Bieri and Groves from a computational point of view. In particular, we show that $I$ has a short tropical basis of cardinality at most $r + \codim I + 1$ at the price of increased degrees, and we provide a computational description of these bases.
---
PDF链接:
https://arxiv.org/pdf/0708.1727