摘要翻译:
本文研究稳定曲线的组合性质。对于任何节点曲线的对偶图,都自然地关联着一个群,这个群是该曲线的广义雅可比N\'eron模型的分量群。我们研究这个群的顺序,称为复杂性。特别地,我们给出了具有最大复杂度的稳定曲线的部分刻画,并给出了仅依赖于曲线的亏格G$的稳定曲线的最大复杂度的一个上界;对于$g\gg0$,这个界是渐近尖锐的。最后,我们提出了关于最大复杂度稳定曲线行为的一些猜想,并证明了该方向上的部分结果。
---
英文标题:
《On the complexity group of stable curves》
---
作者:
Simone Busonero, Margarida Melo, and Lidia Stoppino
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
In this paper, we study combinatorial properties of stable curves. To the dual graph of any nodal curve, it is naturally associated a group, which is the group of components of the N\'eron model of the generalized Jacobian of the curve. We study the order of this group, called the complexity. In particular, we provide a partial characterization of the stable curves having maximal complexity, and we provide an upper bound, depending only on the genus $g$ of the curve, on the maximal complexity of stable curves; this bound is asymptotically sharp for $g\gg 0$. Eventually, we state some conjectures on the behavior of stable curves with maximal complexity, and prove partial results in this direction.
---
PDF链接:
https://arxiv.org/pdf/0808.1529