摘要翻译:
给定代数环面的一个闭子簇,所对应的热带簇是环面的1-参数子群空间中的一个多面体扇,它描述了子簇在无穷远处的行为。证明了当满足通有性条件时,原点的链接只有上有理同调。我们的结果是利用Tevelev的工作和Deligne的混合Hodge结构理论得到的。
---
英文标题:
《Homology of tropical varieties》
---
作者:
Paul Hacking
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
  Given a closed subvariety of an algebraic torus, the associated tropical variety is a polyhedral fan in the space of 1-parameter subgroups of the torus which describes the behaviour of the subvariety at infinity. We show that the link of the origin has only top rational homology if a genericity condition is satisfied. Our result is obtained using work of Tevelev and Deligne's theory of mixed Hodge structures. 
---
PDF链接:
https://arxiv.org/pdf/0711.1847