摘要翻译:
热带几何学中的几个结果将属1的代数平面曲线的J-不变量与属1的热带曲线的周期长度联系起来。本文证明了对于Puiseux级数域上的平面三次函数,如果存在循环,则该函数的$J$-不变量的通有值的负值等于曲线热带化的循环长度。
---
英文标题:
《The j-invariant of a plane tropical cubic》
---
作者:
Eric Katz, Hannah Markwig, Thomas Markwig
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
Several results in tropical geometry have related the j-invariant of an algebraic plane curve of genus one to the cycle length of a tropical curve of genus one. In this paper, we prove that for a plane cubic over the field of Puiseux series the negative of the generic valuation of the $j$-invariant is equal to the cycle length of the tropicalization of the curve, if there is a cycle at all.
---
PDF链接:
https://arxiv.org/pdf/0709.3785