全部版块 我的主页
论坛 经济学人 二区 外文文献专区
433 0
2022-03-09
摘要翻译:
传统的输入输出反馈线性化(IOFL)需要充分的系统动力学知识,并假定输入通道无扰动,系统无不确定性。本文提出了一种基于改进自抗扰控制(IADRC)的无模型主动输入输出反馈线性化(AIOFL)技术,用于设计相对度已知的广义非线性系统的反馈线性化控制律。线性化控制律(LCL)由一类饱和行为的改进非线性扩展状态观测器(INLESO)估计的标度广义扰动和改进非线性状态误差反馈(INLSEF)产生的标称控制律组成。所提出的AIOFL实时地消除了代表所有不需要的动态、外源干扰和系统不确定性的广义扰动,并将系统转化为一个积分器链,直到系统的相对程度,这是非线性系统所需的唯一信息。基于Lyapunov函数进行了稳定性分析,揭示了内环的收敛性和闭环系统的渐近稳定性。将所提出的AIOFL技术应用于柔性关节单连杆机械手(SLFJM)上,对结果进行了验证。仿真结果验证了所提出的基于IADRC的AIOFL工具与传统的基于ADRC的AIOFL和传统IOFL技术相比的有效性。
---
英文标题:
《Model-Free Active Input-Output Feedback Linearization of a Single-Link
  Flexible Joint Manipulator: An Improved ADRC Approach》
---
作者:
Wameedh Riyadh Abdul Adheem and Ibraheem Kasim Ibraheem
---
最新提交年份:
2019
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Computer Science        计算机科学
二级分类:Robotics        机器人学
分类描述:Roughly includes material in ACM Subject Class I.2.9.
大致包括ACM科目I.2.9类的材料。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Traditional Input-Output Feedback Linearization (IOFL) requires full knowledge of system dynamics and assumes no disturbance at the input channel and no system's uncertainties. In this paper, a model-free Active Input-Output Feedback Linearization (AIOFL) technique based on an Improved Active Disturbance Rejection Control (IADRC) paradigm is proposed to design feedback linearization control law for a generalized nonlinear system with known relative degree. The Linearization Control Law(LCL) is composed of a scaled generalized disturbance estimated by an Improved Nonlinear Extended State Observer (INLESO) with saturation-like behavior and the nominal control law produced by an Improved Nonlinear State Error Feedback (INLSEF). The proposed AIOFL cancels in real-time fashion the generalized disturbances which represent all the unwanted dynamics, exogenous disturbances, and system uncertainties and transforms the system into a chain of integrators up to the relative degree of the system, the only information required about the nonlinear system. Stability analysis has been conducted based on Lyapunov functions and revealed the convergence of the INLESO and the asymptotic stability of the closed-loop system. Verification of the outcomes has been achieved by applying the proposed AIOFL technique on the Flexible Joint Single Link Manipulator (SLFJM). The simulations results validated the effectiveness of the proposed AIOFL tool based on IADRC as compared to the conventional ADRC based AIOFL and the traditional IOFL techniques.
---
PDF链接:
https://arxiv.org/pdf/1805.00222
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群