全部版块 我的主页
论坛 经济学人 二区 外文文献专区
266 0
2022-03-06
摘要翻译:
生物和先进的网络物理控制系统除了传感和驱动外,通常还具有有限的、稀疏的、不确定的和分布式的通信和计算。幸运的是,相应的对象和性能要求也是稀疏和结构化的,必须利用这一点来使约束控制器设计可行和易于处理。我们引入了一种新的“系统级”(SL)方法,涉及三个互补的SL元素。系统级参数化(SLPs)推广了所有稳定控制器及其响应的状态空间和Youla参数化,并与系统级约束(SLCs)结合,对已知的最大一类具有凸特征的约束稳定控制器进行了参数化,推广了二次不变性(QI)。SLPs还导致了可检测性和可镇定性的推广,表明存在一个丰富的分离结构,当与SLCs结合时,该结构自然适用于结构受限的控制器和系统。我们进一步提供了一个有用的SLC目录,最重要的是包括稀疏性、延迟和局部性约束,在控制器内部的通信和计算以及外部系统性能方面。由此产生的系统级综合(SLS)问题定义了可用凸规划解决的已知最广的一类约束最优控制问题。一个例子说明了这种系统级方法如何系统地探索控制器性能、鲁棒性和综合/实现复杂性的折衷。
---
英文标题:
《A System Level Approach to Controller Synthesis》
---
作者:
Yuh-Shyang Wang, Nikolai Matni, John C. Doyle
---
最新提交年份:
2019
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Systems and Control        系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--

---
英文摘要:
  Biological and advanced cyberphysical control systems often have limited, sparse, uncertain, and distributed communication and computing in addition to sensing and actuation. Fortunately, the corresponding plants and performance requirements are also sparse and structured, and this must be exploited to make constrained controller design feasible and tractable. We introduce a new "system level" (SL) approach involving three complementary SL elements. System Level Parameterizations (SLPs) generalize state space and Youla parameterizations of all stabilizing controllers and the responses they achieve, and combine with System Level Constraints (SLCs) to parameterize the largest known class of constrained stabilizing controllers that admit a convex characterization, generalizing quadratic invariance (QI). SLPs also lead to a generalization of detectability and stabilizability, suggesting the existence of a rich separation structure, that when combined with SLCs, is naturally applicable to structurally constrained controllers and systems. We further provide a catalog of useful SLCs, most importantly including sparsity, delay, and locality constraints on both communication and computing internal to the controller, and external system performance. The resulting System Level Synthesis (SLS) problems that arise define the broadest known class of constrained optimal control problems that can be solved using convex programming. An example illustrates how this system level approach can systematically explore tradeoffs in controller performance, robustness, and synthesis/implementation complexity.
---
PDF链接:
https://arxiv.org/pdf/1610.04815
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群