摘要翻译:
研究了有限时域线性系统的最优线性控制策略的计算问题。尽管有未知的干扰,状态和输入必须始终保持在预先指定的安全集内。在本技术说明中,我们重点关注控制策略是分布式的要求,即它只能基于关于输出历史的部分信息。众所周知,当一个表示为二次不变性(QI)的条件成立时,最优分布式控制策略可以用一种简便的方法计算。我们的目标是统一和推广一类信息结构,其上的二次不变性等价于有限多个二元矩阵上的一个检验。我们提出的测试证明了在给定任意信息结构的情况下,包括时变通信网络和遗忘机制的情况下,输出反馈分布式控制问题在有限时域上的凸性。此外,我们考虑的框架允许以自然的方式包含对状态和输入的多主题约束,而不影响凸性。
---
英文标题:
《Unified Approach to Convex Robust Distributed Control given Arbitrary
Information Structures》
---
作者:
Luca Furieri and Maryam Kamgarpour
---
最新提交年份:
2019
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Systems and Control 系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
英文摘要:
We consider the problem of computing optimal linear control policies for linear systems in finite-horizon. The states and the inputs are required to remain inside pre-specified safety sets at all times despite unknown disturbances. In this technical note, we focus on the requirement that the control policy is distributed, in the sense that it can only be based on partial information about the history of the outputs. It is well-known that when a condition denoted as Quadratic Invariance (QI) holds, the optimal distributed control policy can be computed in a tractable way. Our goal is to unify and generalize the class of information structures over which quadratic invariance is equivalent to a test over finitely many binary matrices. The test we propose certifies convexity of the output-feedback distributed control problem in finite-horizon given any arbitrarily defined information structure, including the case of time varying communication networks and forgetting mechanisms. Furthermore, the framework we consider allows for including polytopic constraints on the states and the inputs in a natural way, without affecting convexity.
---
PDF链接:
https://arxiv.org/pdf/1711.05324