摘要翻译:
线性二次高斯(LQG)控制是研究状态信息不完全的线性高斯系统的最优控制器和估计器的设计问题。标准LQG假定传感器测量值的集合,将被馈送到估计器,并将被给出。然而,在网络系统和机器人技术中出现的许多问题中,由于功率或有效载荷的限制,人们可能无法使用所有可用的传感器,或者可能有兴趣使用最小的传感器子集来保证达到期望的控制目标。本文介绍了感知约束的LQG控制问题,在给定的感知资源约束下,需要联合设计感知、估计和控制。我们关注的是现实情况下,感知策略必须在有限组可能的感知模式中进行选择。由于最优感知策略的计算比较困难,我们提出了第一个可扩展的算法,该算法计算具有可证明的次最优性保证的近最优感知策略。为此,我们证明了一个分离原理成立,它允许隔离地设计传感、估计和控制策略。最后讨论了感知约束LQG控制的两个应用,即感知约束编队控制和资源约束机器人导航。
---
英文标题:
《Sensing-Constrained LQG Control》
---
作者:
Vasileios Tzoumas, Luca Carlone, George J. Pappas, Ali Jadbabaie
---
最新提交年份:
2020
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Computer Science 计算机科学
二级分类:Robotics 机器人学
分类描述:Roughly includes material in ACM Subject Class I.2.9.
大致包括ACM科目I.2.9类的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Systems and Control 系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Mathematics 数学
二级分类:Dynamical Systems 动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
---
英文摘要:
Linear-Quadratic-Gaussian (LQG) control is concerned with the design of an optimal controller and estimator for linear Gaussian systems with imperfect state information. Standard LQG assumes the set of sensor measurements, to be fed to the estimator, to be given. However, in many problems, arising in networked systems and robotics, one may not be able to use all the available sensors, due to power or payload constraints, or may be interested in using the smallest subset of sensors that guarantees the attainment of a desired control goal. In this paper, we introduce the sensing-constrained LQG control problem, in which one has to jointly design sensing, estimation, and control, under given constraints on the resources spent for sensing. We focus on the realistic case in which the sensing strategy has to be selected among a finite set of possible sensing modalities. While the computation of the optimal sensing strategy is intractable, we present the first scalable algorithm that computes a near-optimal sensing strategy with provable sub-optimality guarantees. To this end, we show that a separation principle holds, which allows the design of sensing, estimation, and control policies in isolation. We conclude the paper by discussing two applications of sensing-constrained LQG control, namely, sensing-constrained formation control and resource-constrained robot navigation.
---
PDF链接:
https://arxiv.org/pdf/1709.08826