全部版块 我的主页
论坛 经济学人 二区 外文文献专区
246 0
2022-03-07
摘要翻译:
研究了具有异步和可能有损通信特征的网络上的分布式凸无约束优化问题。我们分析了全局代价函数是局部耦合局部严格凸代价函数之和的情形。正如在一个激励示例中详细讨论的那样,这类优化目标在定位问题和基于分区的状态估计中是典型的。受广义梯度下降策略,即块Jacobi迭代的启发,我们提出了一种新的解决方案,它适合于分布式实现,并且在适当的步长条件下,可以证明对通信故障具有局部弹性。理论分析依赖于时间尺度的分离和李雅普诺夫理论。此外,为了显示算法的灵活性,我们导出了一个弹性梯度下降迭代和一个弹性广义梯度二次规划作为我们的策略的两个自然特殊化。在第二种情况下,提供了全局鲁棒性。最后,在IEEE123节点配电馈线上进行了基于划分的智能电网鲁棒状态估计的数值实验。
---
英文标题:
《Generalized gradient optimization over lossy networks for
  partition-based estimation》
---
作者:
Marco Todescato and Nicoletta Bof and Guido Cavraro and Ruggero Carli
  and Luca Schenato
---
最新提交年份:
2017
---
分类信息:

一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Systems and Control        系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--

---
英文摘要:
  We address the problem of distributed convex unconstrained optimization over networks characterized by asynchronous and possibly lossy communications. We analyze the case where the global cost function is the sum of locally coupled local strictly convex cost functions. As discussed in detail in a motivating example, this class of optimization objectives is, for example, typical in localization problems and in partition-based state estimation. Inspired by a generalized gradient descent strategy, namely the block Jacobi iteration, we propose a novel solution which is amenable for a distributed implementation and which, under a suitable condition on the step size, is provably locally resilient to communication failures. The theoretical analysis relies on the separation of time scales and Lyapunov theory. In addition, to show the flexibility of the proposed algorithm, we derive a resilient gradient descent iteration and a resilient generalized gradient for quadratic programming as two natural particularizations of our strategy. In this second case, global robustness is provided. Finally, the proposed algorithm is numerically tested on the IEEE 123 nodes distribution feeder in the context of partition-based smart grid robust state estimation in the presence of measurements outliers.
---
PDF链接:
https://arxiv.org/pdf/1710.10829
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群