全部版块 我的主页
论坛 经济学人 二区 外文文献专区
740 0
2022-04-13
摘要翻译:
我们提出了一种新的方法,使神经形态回路的控制接近于单个神经元的生理神经调节。该方法是通用的,因为它只依赖于基本电压控制电流源的并联互连。与通过状态空间模型的参数调整来控制非线性电路不同,我们的方法是纯粹的输入输出。电路元件被控制和互连,以在规定的时间尺度内形成电路的电流-电压特性(I-V曲线)。反过来,形成这些I-V曲线决定了电路的兴奋性。我们表明,这种方法能够对电路行为进行鲁棒和精确的控制,并类似于神经调节的生物物理机制。作为概念的证明,我们模拟了一个由工作在弱反转区的MOSFET跨导放大器组成的SPICE模型。
---
英文标题:
《Neuromodulation of Neuromorphic Circuits》
---
作者:
Luka Ribar, Rodolphe Sepulchre
---
最新提交年份:
2019
---
分类信息:

一级分类:Quantitative Biology        数量生物学
二级分类:Neurons and Cognition        神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,神经网络,感觉运动控制,行为,注意
--
一级分类:Computer Science        计算机科学
二级分类:Neural and Evolutionary Computing        神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Systems and Control        系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--

---
英文摘要:
  We present a novel methodology to enable control of a neuromorphic circuit in close analogy with the physiological neuromodulation of a single neuron. The methodology is general in that it only relies on a parallel interconnection of elementary voltage-controlled current sources. In contrast to controlling a nonlinear circuit through the parameter tuning of a state-space model, our approach is purely input-output. The circuit elements are controlled and interconnected to shape the current-voltage characteristics (I-V curves) of the circuit in prescribed timescales. In turn, shaping those I-V curves determines the excitability properties of the circuit. We show that this methodology enables both robust and accurate control of the circuit behavior and resembles the biophysical mechanisms of neuromodulation. As a proof of concept, we simulate a SPICE model composed of MOSFET transconductance amplifiers operating in the weak inversion regime.
---
PDF链接:
https://arxiv.org/pdf/1805.05696
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群