摘要翻译:
本文引入了弱通畅拉格朗日子流形的概念,并利用[Foo2]中的模型数据构造了弱通畅拉格朗日子流形的势函数。本文在toric流形上进行了涉及$\mathfrak{PO}$的显式计算,并研究了这类Lagrangian子流形与Givental[Gi1]的早期工作之间的关系。Givental[Gi1]主张量子上同调环与某个函数的Jacobian环同构,称为Landau-Ginzburg超势。结合[FOOO2]的结果,我们还将该研究应用于各种例子,以说明它对toric流形的Lagrangian纤维辛拓扑的含义。特别地,我们把它与拉格朗日光纤的哈密顿位移性质和Entov-Polterovich辛准态联系起来。
---
英文标题:
《Lagrangian Floer theory on compact toric manifolds I》
---
作者:
K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
一级分类:Physics 物理学
二级分类:Mathematical Physics 数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Mathematical Physics 数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
---
英文摘要:
The present authors introduced the notion of \emph{weakly unobstructed} Lagrangian submanifolds and constructed their \emph{potential function} $\mathfrak{PO}$ purely in terms of $A$-model data in [FOOO2]. In this paper, we carry out explicit calculations involving $\mathfrak{PO}$ on toric manifolds and study the relationship between this class of Lagrangian submanifolds with the earlier work of Givental [Gi1] which advocates that quantum cohomology ring is isomorphic to the Jacobian ring of a certain function, called the Landau-Ginzburg superpotential. Combining this study with the results from [FOOO2], we also apply the study to various examples to illustrate its implications to symplectic topology of Lagrangian fibers of toric manifolds. In particular we relate it to Hamiltonian displacement property of Lagrangian fibers and to Entov-Polterovich's symplectic quasi-states.
---
PDF链接:
https://arxiv.org/pdf/0802.1703