全部版块 我的主页
论坛 经济学人 二区 外文文献专区
260 0
2022-03-18
摘要翻译:
这是关于toric流形的Lagrangian Floer理论系列论文第一部分的继续。利用周围循环对Floer上同调的形变,我们称之为体形变,我们在一些紧致的toric流形上找到了一个不可移动的Lagrangian纤维的连续体。我们还提供了一种求任意紧致扭转流形中所有具有体变形的非消失Floer上同调的纤维的方法,我们称之为体平衡拉格朗日纤维。
---
英文标题:
《Lagrangian Floer theory on compact toric manifolds II : Bulk
  deformations》
---
作者:
Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta and Kaoru Ono
---
最新提交年份:
2011
---
分类信息:

一级分类:Mathematics        数学
二级分类:Symplectic Geometry        辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  This is a continuation of part I in the series of the papers on Lagrangian Floer theory on toric manifolds. Using the deformations of Floer cohomology by the ambient cycles, which we call bulk deformations, we find a continuum of non-displaceable Lagrangian fibers on some compact toric manifolds. We also provide a method of finding all fibers with non-vanishing Floer cohomology with bulk deformations in arbitrary compact toric manifolds, which we call bulk-balanced Lagrangian fibers.
---
PDF链接:
https://arxiv.org/pdf/0810.5654
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群