全部版块 我的主页
论坛 经济学人 二区 外文文献专区
482 0
2022-03-09
摘要翻译:
本文给出了给定迹和范数的有限域中元素个数的Katz界的一个改进。将该问题简化为一类toric Calabi-Yau超曲面上有理点数的估计,然后利用Rojas-Leon和第二作者对此类toric超曲面进行详细的上同调计算,得到了改进。
---
英文标题:
《On Katz's bound for number of elements with given trace and norm》
---
作者:
Marko Moisio, Daqing Wan
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  In this note an improvement of the Katz's bound on the number of elements in a finite field with given trace and norm is given. The improvement is obtained by reducing the problem to estimating the number of rational points on certain toric Calabi-Yau hypersurface, and then to use detailed cohomological calculations by Rojas-Leon and the second author for such toric hypersurfaces.
---
PDF链接:
https://arxiv.org/pdf/0802.3200
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群