摘要翻译:
空间搜索问题在现实世界中比比皆是,从寻找隐藏的核或化学来源到雪崩后寻找滑雪者。我们举例说明了涉及两个代理的空间搜索的形式和解决方案,这两个代理在搜索过程中可能选择共享信息,也可能不选择共享信息。对于某些类型的任务,多个搜索者之间共享信息有利于协同搜索。在一些例子中,智能体能够通过聚集信息并基于对最大信息收集期望的局部判断进行移动来实现协同。我们还探索了一维和二维简化情况的分析和数值,为分析更复杂的问题提供了一个框架。这些一般性的考虑为设计现实世界搜索问题的最优算法提供了指导。
---
英文标题:
《Cooperative searching for stochastic targets》
---
作者:
Vadas Gintautas, Aric Hagberg, Luis M. A. Bettencourt
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
Spatial search problems abound in the real world, from locating hidden nuclear or chemical sources to finding skiers after an avalanche. We exemplify the formalism and solution for spatial searches involving two agents that may or may not choose to share information during a search. For certain classes of tasks, sharing information between multiple searchers makes cooperative searching advantageous. In some examples, agents are able to realize synergy by aggregating information and moving based on local judgments about maximal information gathering expectations. We also explore one- and two-dimensional simplified situations analytically and numerically to provide a framework for analyzing more complex problems. These general considerations provide a guide for designing optimal algorithms for real-world search problems.
---
PDF链接:
https://arxiv.org/pdf/1103.4888