摘要翻译:
对于Gorenstein曲线X和X的非奇点P,我们构造了从X到J_x^1的Abel映射a和从X到J_x^0的Abel映射A_P,其中J_x^i是X上简单的、无扭转的、阶为1的滑轮的模格式。证明了A和A_P的图像曲线具有相同的X算术亏格,并证明了A和A_P是远离X有理子曲线L的嵌入,满足X-L在分离结点上的闭包。最后,我们建立了Seshadri的模格式U_X(1)与X上半稳、无扭转、秩-1滑轮的联系,得到了a(X)在U_X(1)中的嵌入。
---
英文标题:
《Abel maps of Gorenstein curves》
---
作者:
Lucia Caporaso, Juliana Coelho and Eduardo Esteves
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For a Gorenstein curve X and a nonsingular point P of X, we construct Abel maps A from X to J_X^1 and A_P from X to J_X^0, where J_X^i is the moduli scheme for simple, torsion-free, rank-1 sheaves on X of degree i. The image curves of A and A_P are shown to have the same arithmetic genus of X. Also, A and A_P are shown to be embeddings away from rational subcurves L of X meeting the closure of X-L in separating nodes. Finally, we establish a connection with Seshadri's moduli scheme U_X(1) for semistable, torsion-free, rank-1 sheaves on X, obtaining an embedding of A(X) into U_X(1).
---
PDF链接:
https://arxiv.org/pdf/0712.1457