摘要翻译:
Nikulin对所有辛作用于K3曲面上的有限阿贝尔群进行了分类,并证明了在K3晶格$u^3+E_8(-1)^2$上的诱导作用只依赖于群而不依赖于K3曲面。对于Nikulin表中的所有群,我们利用一些特殊的椭圆K3曲面计算了不变子格及其正交补。
---
英文标题:
《Elliptic fibrations and symplectic automorphisms on K3 surfaces》
---
作者:
Alice Garbagnati and Alessandra Sarti
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Nikulin has classified all finite abelian groups acting symplectically on a K3 surface and he has shown that the induced action on the K3 lattice $U^3\oplus E_8(-1)^2$ depends only on the group but not on the K3 surface. For all the groups in the list of Nikulin we compute the invariant sublattice and its orthogonal complement by using some special elliptic K3 surfaces.
---
PDF链接:
https://arxiv.org/pdf/0801.3992