摘要翻译:
设$X$是一个代数簇,$F$是一个正则函数,$J:U\子集X$是$F$的消失轨迹的补,$M$是$U$上的完整D-模。考虑$d_u$-module$m\times“f^s”$。本说明的目的是描述所有$D_X$-子模块$N\子集J_*(M\times“F^s”)$,这样$J^*(N)\Simeq M\times“F^s”$。
---
英文标题:
《A corollary of the b-function lemma》
---
作者:
Alexander Beilinson and Dennis Gaitsgory
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $X$ be an algebraic variety, $f$ a regular function, $j:U\subset X$ the complement to the locus of vanishing of $f$, and $M$ a holonomic D-module on $U$. Consider the $D_U$-module $M\otimes "f^s"$. The goal of this note is to describe all $D_X$-submodules $N\subset j_*(M\otimes "f^s")$ such that $j^*(N)\simeq M\otimes "f^s"$.
---
PDF链接:
https://arxiv.org/pdf/0810.1504