全部版块 我的主页
论坛 经济学人 二区 外文文献专区
919 0
2022-03-09
摘要翻译:
在有限博弈中,混合纳什均衡总是存在的,而纯均衡可能不存在。为了评估这种不存在的相关性,我们考虑随机抽取收益的博弈。特别是,我们关注的是这样的游戏:大量的玩家都可以从两种可能的策略中选择一种,并且收益是I.I.D。有联系的可能性。给出了关于纯Nash平衡点随机数的渐近结果,如快速增长和一个中心极限定理,并给出了逼近误差的界。此外,利用渗流模型和博弈论之间的一种新的联系,我们详细描述了纳什均衡的几何结构,并证明了当平局概率较小时,最优响应动力学达到纳什均衡,其概率随着参与者数量的增加而迅速接近1。我们证明了许多相变只依赖于模型的单个参数,即存在联系的概率。
---
英文标题:
《Pure Nash Equilibria and Best-Response Dynamics in Random Games》
---
作者:
Ben Amiet, Andrea Collevecchio, Marco Scarsini, Ziwen Zhong
---
最新提交年份:
2020
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--

---
英文摘要:
  In finite games mixed Nash equilibria always exist, but pure equilibria may fail to exist. To assess the relevance of this nonexistence, we consider games where the payoffs are drawn at random. In particular, we focus on games where a large number of players can each choose one of two possible strategies, and the payoffs are i.i.d. with the possibility of ties. We provide asymptotic results about the random number of pure Nash equilibria, such as fast growth and a central limit theorem, with bounds for the approximation error. Moreover, by using a new link between percolation models and game theory, we describe in detail the geometry of Nash equilibria and show that, when the probability of ties is small, a best-response dynamics reaches a Nash equilibrium with a probability that quickly approaches one as the number of players grows. We show that a multitude of phase transitions depend only on a single parameter of the model, that is, the probability of having ties.
---
PDF链接:
https://arxiv.org/pdf/1905.10758
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群