全部版块 我的主页
论坛 经济学人 二区 外文文献专区
410 0
2022-03-10
摘要翻译:
本文主要研究具有分数阶动态特性的时变复杂网络的分析与设计。这些系统是模拟自然和人工系统中复杂动态过程的关键。值得注意的是,例子包括神经生理信号,如捕捉电位场变化的脑电图(EEG),以及作为神经元活动代理的血氧合水平依赖(BOLD)信号。然而,由局部测量EEG和BOLD产生的复杂网络通常被视为孤立的网络,不能捕捉外部刺激的依赖性,例如,起源于皮层下结构,如丘脑和脑干。因此,我们提出了在未知未知(即激励)下分析此类复杂网络的范式转换。因此,本文的主要贡献有三个方面:(i)我们提出了一个交替方案,能够确定模型参数和未知刺激的最佳估计;(ii)我们提供了充分必要条件,以确保有可能恢复状态和未知刺激;(iii)在这些条件下,我们确定一个需要测量的变量的小子集,以确保状态和输入都可以恢复,同时建立关于最小可能子集的次最优性保证。最后,我们使用从一个可穿戴式脑电设备收集的真实数据,给出了几个主要结果的教学实例。
---
英文标题:
《Dealing with Unknown Unknowns: Identification and Selection of Minimal
  Sensing for Fractional Dynamics with Unknown Inputs》
---
作者:
Gaurav Gupta, Sergio Pequito, Paul Bogdan
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--

---
英文摘要:
  This paper focuses on analysis and design of time-varying complex networks having fractional order dynamics. These systems are key in modeling the complex dynamical processes arising in several natural and man made systems. Notably, examples include neurophysiological signals such as electroencephalogram (EEG) that captures the variation in potential fields, and blood oxygenation level dependent (BOLD) signal, which serves as a proxy for neuronal activity. Notwithstanding, the complex networks originated by locally measuring EEG and BOLD are often treated as isolated networks and do not capture the dependency from external stimuli, e.g., originated in subcortical structures such as the thalamus and the brain stem. Therefore, we propose a paradigm-shift towards the analysis of such complex networks under unknown unknowns (i.e., excitations). Consequently, the main contributions of the present paper are threefold: (i) we present an alternating scheme that enables to determine the best estimate of the model parameters and unknown stimuli; (ii) we provide necessary and sufficient conditions to ensure that it is possible to retrieve the state and unknown stimuli; and (iii) upon these conditions we determine a small subset of variables that need to be measured to ensure that both state and input can be recovered, while establishing sub-optimality guarantees with respect to the smallest possible subset. Finally, we present several pedagogical examples of the main results using real data collected from an EEG wearable device.
---
PDF链接:
https://arxiv.org/pdf/1803.04866
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群